INDUSTRY INSIGHT

Published June 2023

2022 Consumer **Confidence Report**

112 N. 1st Street La Puente, California 91744 (626) 336-1307 | industrypublicutilities.com

Committed to Water Quality: **About the Consumer Confidence Report**

Industry Public Utilities is committed to keeping our customers informed about the quality of their water. We provide a safe, reliable drinking water supply to your homes continuously that meets or exceeds all State and Federal drinking water standards.

Our 2022 Consumer Confidence Report (CCR) is an annual drinking water quality report that the Safe Drinking Water Act requires public water systems to provide to its customers and includes important information on where our water comes from and the quality of your water.

Commission

Cathy Marcucci Cory C. Moss Mark Radecki President Commissioner Commissioner

Newell W. Ruggles Michael Greubel Commissioner Commissioner

For information or questions regarding this report, please contact Paul Zampiello, (626) 336-1307.

Este informe contiene sobre su aqua de beber. Tradúzcalo ó hable con alquien que lo entienda bien. Para más información o preguntas con respecto Zampiello, (626) 336-1307.

該報告包含有關您的 飲用水的重要信息讓 某人為您翻譯或與理 解它的人交談

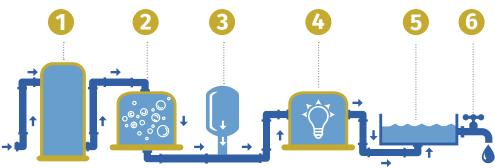
About Your Drinking Water: Sampling Results

Your drinking water is tested thousands of times per year to ensure it meets or exceeds all state and federal drinking water standards. certified professionals and laboratories to ensure the highest levels of safety.

Where does your water come from?

During 2022, Industry Public Utilities' water supply relied on local groundwater provided by San Gabriel Valley Water Company (SGVWC), La Puente Valley County Water District (LPVCWD) and the City of Industry Well No. 5 (all located within the Main San Gabriel Groundwater Basin).

The majority of the water delivered to customers through the water system undergoes a significant treatment process. The treatment systems are designed to treat specific types of contaminants. This process is monitored closely and the water is sampled regularly.



Groundwater Basin

Natural Contaminants Present in Source Water Prior to Treatment May Include:

- Microbial Contaminants: Such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic Contaminants: Such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and Herbicides: That may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Organic Chemical Contaminants: Including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive Contaminants: Can be naturally occurring or be the result of oil and gas production and mining activities.

How your water is treated.

- Granular Activated Carbon Filled (GAC) Vessels remove VOCs to below detection levels.
 - emove injection system injects tion levels. hydrogen peroxide for the UV reactors.
 - UV reactors treat for NDMA and 1, 4-Dioxane.

A hydrogen peroxide

- Water exiting the facility is chlorinated to provide a disinfectant residual in the water system.
- Treated water enters the water system for delivery to your home.

A single pass ion exchange system uses resin specifically manufactured to remove perchlorate.

Information About Drinking Water Contaminants

Drinking water sources (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As the water travels over the surface of the land or through the ground, the water dissolves naturally occurring minerals – sometimes including radioactive material – and can also pick up substances resulting from the presence of animals and human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline, 1-800-426-4791.

Drinking Water Source Assessment

In accordance with the Federal Safe Drinking Water Act, an assessment of the drinking water sources for SGVWC was completed in October 2008. The goal of this assessment was to identify types of activities in the proximity of our drinking water sources that could pose a threat to the water quality. The assessment concluded SGVWC's water sources are most vulnerable to contaminants from the following activities or facilities, including leaking underground storage tanks (known as contaminant plumes); hardware/lumber/parts stores; hospitals; gasoline stations; above ground storage tanks; spreading basins; storm drain

discharge points; and transportation corridors, such as freeways and state highways.

An assessment of the drinking water sources for LPVCWD was updated in March 2008. The assessment concluded LPVCWD's water sources are most vulnerable to contaminants from the following activities or facilities, including leaking underground storage tanks (known as contaminant plumes), high-density housing and transportation corridors, such as freeways and state highways.

Request a summary of the LPVCWD or SGVWC assessment by contacting Paul Zampiello at (626) 336-1307.

Precautions for Immuno Compromised People

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people, such as those with cancer taking chemotherapy, people who have undergone organ transplants, those with HIV/ AIDS or other immune system disorders, the elderly and infants, can be particularly at risk from infections.

Immuno-compromised people should seek advice about drinking water from their health care providers. US-EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the **Safe Drinking Water Hotline:** 1-800-426-4791.

Contaminants in Drinking Water

Lead and Drinking Water

Regulations require local water agencies to test for lead at all K-12 schools constructed before 2010. K-12 schools (total of 2) within the boundaries of the IPU water system were sampled and tested for lead in 2018. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

IPU is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the **USEPA's Safe Drinking Water Hotline, 1-800-426-4791**.

Nitrate Advisory

At times, nitrate in your tap water may have exceeded half the MCL, but it was never greater than the MCL. The following advisory is issued because in 2022, IPU recorded a nitrate measurement in its treated drinking water above half the nitrate MCL. Nitrate in drinking water at levels above 10 milligrams per liter (mg/L) is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Standards, Definitions, Acronyms and Abbreviations

The chart in this report shows the following types of water quality standards:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLS are set to protect the odor, taste, and appearance of drinking water.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Primary Drinking Water Standard (PDWS): MCLs, MRDLs and treatment techniques (TTs for contaminants that affect health, along with their monitoring and reporting requirements.

Regulatory Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

Notification Level (NL): NLs are health-based advisory levels established by the State Board for chemicals in drinking water that lack MCLs. When chemicals are found at concentrations greater than their NL, certain requirements and recommendations apply.

The chart in this report includes three types of water quality goals:

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

INDUSTRY PUBLIC UTILITIES — 2022 WATER QUALITY TABLE												
Constituents	MOL	PHG or	DLR	Trea	ted Water	Typical Source of Contaminant						
and (Units)	MCL	(MCLG)	DLR	Average (1)	Range (Min-Max)							
Primary Drinking Water Standards — Health-Related Standards												
Inorganic Chemicals												
Arsenic (μg/l)	10	0.004	2	2.34	1.2 - 2.8	Erosion of natural deposits						
Barium (mg/l)	1	2	0.1	0.15	0.1 - 0.21	Erosion of natural deposits						
Fluoride (mg/l)	2	1	0.1	0.79	2.4 - 7.1	Erosion of natural deposits						
Nitrate as N (mg/l)	10	10	0.4	5.2	2.5 - 8.7	Leaching from fertilizer use						
RadioActivity												
Gross Alpha (pCi/l)	15	(O)	3	3.0	ND - 4.93	Erosion of natural deposits						
Uranium (pCi/l)	20	0.43	1	3.5	1.2 - 6.4	Erosion of natural deposits						
Secondary Drinking Water Standards — Aesthetic Standards, Not Health-Related												
Chloride (mg/l)	500	NA	NA	34	14 - 72	Runoff/leaching from natural deposits						
Odor (threshold odor number)	3	NA	1	0.98	ND - 1	Runoff/leaching from natural deposits						
Specific Conductance (µmho/cm)	1,600	NA	NA	616	420 - 890	Substances that from ions in water						
Sulfate (mg/l)	500	NA	0.5	53	27 - 100	Runoff/leaching from natural deposits						
Total Dissolved Solids (mg/l)	1,000	NA	NA	374	220 - 530	Runoff/leaching from natural deposits						
		Oth	ier Consti	tuents of Int	erest							
Alkalinity (mg/l)	NA	NA	NA	192.4	150 -250	Runoff/leaching from natural deposits						
Calcium (mg/l)	NA	NA	NA	80.0	49.9 - 113	Runoff/leaching from natural deposits						
Hardness as CaCO3 (mg/l)	NA	NA	NA	262.7	164 - 370	Runoff/leaching from natural deposits						
Hexavalent Chromium (µg/l)	NA	0.02	NA	4.6	2.8 - 7.2	Runoff/leaching from natural deposits						
Magnesium (mg/l)	NA	NA	NA	15.3	9.6 - 21.3	Runoff/leaching from natural deposits						
pH (unit)	NA	NA	NA	7.8	7.7 - 8.1	Hydrogen ion concentration						
Potassium (mg/l)	NA	NA	NA	3.9	2.7 - 5.4	Runoff/leaching from natural deposits						
Sodium (mg/l)	NA	NA	NA	19.9	12 - 36	Runoff/leaching from natural deposits						

Notes

AL = Action Level

DLR = Detection Limit for Purposes of Reporting

MCL = Maximum Contaminant Level

MCLG = Maximum Contaminant Level Goal

WICEG - Maximum Contaminant Level Goal

mg/I = Parts per million or milligrams per liter

MRDL = Maximum Residual Disinfectant Level

MRDLG = Maximum Residual Disinfectant Level Goal

NA = No Applicable Limit

ND = Not Detected at DLR

ng/I = Parts per trillion or nanograms per liter

NL = Notification Level

NTU = Nephelometric Turbidity Units

pCi/I = PicoCuries per liter

PHG = Public Health Goal

 μ g/I = Parts per billion or micrograms per liter

μmho/cm = Micromhos per centimeter

[1] The results reported in the table are average concentrations of the constituents detected in your drinking water during year 2022 or from the most recent tests. Treated water data are provided by San Gabriel Valley Water Company and La Puente Valley County Water District. [2] Constituent does not have a DLR. Constituent was detected but the average result is less than the analytical Method Reporting Limit. [3] "<" means constituent was detected but the average result is less than the indicated reporting limit or DLR. [4] Monitoring data provided by San Gabriel Valley Water Company. [5] This water quality is regulated by a secondary standard to maintain aesthetic characteristics (taste, odor, color).

Unregulated Constituents Requiring Monitoring													
Constituents and (Units) [4]	NL	PHG or (MCLG)		Average (1)		Range (Min-Max)		Typical Source of Contaminant					
Chlorate (μg/l)	800	NA		225.4		ND - 300		Byproduct of drinking water chlorination; industrial processes					
Chlorodifluoromethane (µg/l)	NA	NA		0.07		ND - 0.14		Refrigerant					
Molybdenum (μg/l)	NA	NA		2.6264			ND - 2.9	Runoff/leaching from natural deposits					
Strontium (ppb)	NA	NA		593			ND - 660	Runoff/leaching from natural deposits					
Vanadium (μg/l)	50	NA			2.3		ND - 4.5	Runoff/leaching from natural deposits					
Distribution System Water Quality													
Constituents and (Units)	MCL or (MRDL) or <smcl></smcl>		MCLG or (MRDLG)		Average		Range (Min-Max)	Typical Source of Contaminant					
Total Coliforms	no more than 1 positive monthly sample		0		0		0	Naturally present in the environment					
Total Trihalomethanes (μg/l)	80		NA		12.1		3.3 - 4.3	By-product of drinking water disinfection					
Haloacetic Acids (µg/l)	60		NA		ND		ND	By-product of drinking water disinfection					
Chlorine Residual (mg/l)	(4)		(4)		1.22		0.78 - 1.64	Drinking water disinfectant added for treatment					
Heterotrophic Plate Count (HPC)	TT		NA	İ	0.78		ND - 74	Naturally present in the environment					
Odor (threshold odor number) [5]	3		NA		ND		ND	Naturally occuring organic materials					
Turbidity (NTU) [5]	5		NA	<0.1 [3]]	ND - 0.3	Runoff/leaching from natural deposits					
Distribution System — Lead and Copper at Residential Taps													
Constituents and (Units)	Action L	evel	PHG	;	90th Percent Value	-	Sites Exceeding AL/Number of Sits	Typical Source of Contaminant					
Lead (µg/l)	15		0.2		0.78		0/23	Corrosion of household plumbing					
Copper (mg/l)	1.3		0.3		0.52		0/23	Corrosion of household plumbing					

A total of 23 residences were tested for lead and copper in August 2022. Lead and Copper was not detected above the action level in any of the samples. The Industry Public Utilities complies with the Lead and Copper Rule. The next required sampling for lead and copper will be conducted in the summer of 2025.

School Lead Sampling

Number of Schools Requesting Lead Sampling

2

Tables show the average and range of concentrations of the constituents tested during the 2022 calendar year. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Unless otherwise noted, the data in this table are from the testing performed from January 1 to December 31, 2022. The table lists all the contaminants detected in your drinking water that have federal and state drinking water standards. Detected unregulated contaminants of interest are also included.

